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ABSrRACr

The extrernal large deviation rate of the F- statistic over a large class is dtermined.

It-is shown'that the Bahadur efficiency of the F-test relative to Moses' rank test

for equality of variances is zero at every alternative when the distribution of

the uderlying observations 1.6 unspecified.,
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I. Introduction. Extremal large deviation rates measure the slowest rate of con-

vergence" to zero of certain sequences of probabilities. When these probabilities

arise from a sequence of test statistics, extremal large deviation rates find

application in the computation of asymptotic relative efficiency (ARE) of tests,

such as Bahadur's definition of ARE.

The extremal large deviation rate of only a few common statistics is know.

Here we will determine the extremal large deviation rate of the F-statistic.

Before precisely defining extremal large deviation rates, we will discuss

Bahadur's definition of APB, in which it finds application. Let (X, A) be a

measurable space. Let X - (Xi be a sequence of random variables on

(X, A), and let P be a probability measure on (X, A) such that 4 is a sequence

of independent identically distributed random variables with common distribution

P Let C and C' be disjoint non-empty collections of distributions, and

consider the problem of testing

H: P cC vs. Ha: P cC'.
0

Typically, decision rules are of the form "reject H0 if Sn exceeds som.

specified value a", where Sn is a measurable real valued function of (XiOil; that

is S - P.. )a is a sequence of test statistics. Call this test T (a).

Let S' - fS!)i=1 be another sequence of test statistics. Call the test

that rejects H0 when S' exceeds a specified value, say a', Ts,(a'). The test

ni-Ts,(al ) is a competitor to the test T s(a). We choost, between these tests by

considering their ARE.

The most important definitions of ARE are due to Pitman, (1949), .bdges-

Leharji (1956), and Bahadur (1960). Under mild regularity conditions, evaluation
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of the Bahadur efficiency of Ts (a) relative to Ts, (al) requires the

deetnto f xrra ag devi.at".ons rates of {Si)X and IS 1*.=l

~We nmw make precise the concept of an extremal large deviation rat.

~Definition 1: If

SWQS, C, a) --lira n"  log sup P($ n z: a)

|n4- Poe

. ,is well defined, we say that W(Q, C, a) is the extrema! la,-ge deviation rate at

-- a deviation of a for the sequence § under the class of probability models C.

That is, WQ , C, a) is a measure of the rate at which

sup P(S n a a)P1c

converges to zero.

Let C be such that for every P e C,

P(Sn + 0) - 1.

Consider the tst T (a), where a i. F T(a) sup P( a) is the signi-

ficance level of Ts(a), and L. Fn(n) is the usual observed significance

level. If P e I', P(L n - O ) - 0, If P 4 C (in particular, if P e C1, the

alternative class), then P(Ln + ) rge In typical cases, Ln converges to
zero exponentiall fast at non-oull P.

Definition 2' The alf slon of T at non-r-ull P is given by

W (P) = -lir nn I log Ln (SP]

T.hen ihe above , w aeet t defined.
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We may interpret p (P) as a measure of the rate at which the observed

significance level tends to zero, with large values indicating more rapid

convergence. Bahadur has exploited this property to define a measure of ARE,

described below.

Definition 3: Let Ts (.) and Ts ,() be as defined earlier. At non-null P,

let Ts(.) :..ave half slope p(P) and let Ts , (.) have half slope p'(P). The

Bahadur efficiency of Ts (.), relative to Ts (.), at non-null P is given by

p(P)/p'(P).

The following theorem, due to Bahadur, relates the concepts of half slope

ard extremal large deviation rates.

Theorem 1: (Bahadur, 1960). Let P(Sn -* a(P)) = I at non-null P. Let

W(S, C, t) be well defined for t in a neighborhood of a(P) and continuous

at t - a(P). Then p(P) = W(S, C, a(P)).
t S X., where C consists of a single distribution

a-1i

F and fxdP(x) = 0. Using Chernoff's Theorem, stated below, evaluation of the

half slope of 3 at a fixedI non-null distribution is straightforward.

Theorem 2: (Chernoff, 1952). Let {X i l be a sequence of i.i.d. random

variables. Let 0(t) = Ee , not necessarily finite for t * 0. Then for

every real a,

lir nnI log P(n I Xi -. a) = inf log 0(t)e~at.I i=1 t)O
tZat

Hence, at non-nill G, the half slope of S equals -inf log *(t)e where

fe(t) x fetdF(x) and a = fxdG(x), 
tO
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II. Large Deviation Rates of the F-Statistic

Extremal large deviation rates over a X.rge class have only been evaluated

in a few instances. For example, if the statistic of interest is a linear

rank statistic, a straightforward method exists. See Klotz (1965), who

evaluates the half slope of the Wilcoxon rank sum statistic, as well as uther

linear rank statistics.

One of the few non-distribution-free statistics for which the extremal

large deviation rate has been studied is the t-statistic.

Theorem 3: (Jones and Sethuraman, 1978). Let {X }i 1 , {Yi}17l be two sequences
of mutually independent identically distributed random variables, with common

distribution F and joint distribution PF' Let

- i- n -i n
Xn - n  i__Xi Y n n  iI Yi

n i=l i "

2 n- n2 Yn2
Sn - X n) and

s2 - I 2 2
yn iI i - .

Define the one-and two-sample t-statistics, 'in and T2,n respectively, as

T =X/(s 2 andl,n n xn
2 + 2T2,n n n x,n ,n)/ 2 )

where expressions of the form r/O are interpreted asI if r>O0
if r = •
if r <0



Let C1  (F: F is symmetric about 01 and let C2  {(F, G): F - G).

~~ ja) jI4(h(l +' a/Cl + a2), )Then for every a > 0, j -1 or 2, W({T. n)ncc Cj, ja) a I 1.D / 1 h)), h),

p2  1 (p1, p2) " p1 log + (1 - p1) log

Further, this rate of convergence is achieved by a t-statistic based on

symmetric Bernoulli observations. That is, the t-statistic converges most

slowly when based on !'nmnetric Bernoulli observations.

Definition 4: Let (X , {Y.1, S2 S2  and indeterminant:forms be as

1 i-i ilul x,n' Sy,n'

in Theorem 3. Let the F-statistic, P(n), b given by nsn Let the

shifted F-statistic, F s(n), equal F(n) - 1.

It is reasonable to base a test of equality of variances, assumed to
exist, on F s(n), with large values indicating rejection. Under the null

hypothesis, Fs(n) l 0 a.s. At an alternative Ha, Fs(n) . a(Ha) a.s., where

a(Ha) is assumed positive. We will now determine the large deviation rate of

Ss(n) under certain paxametric aswiptions.

Theorem 4: Let F assign mass each to !. That is, F is a symmetric Bernoulli

distribution. Let {X}1>, (Y }I be mutually independent identically dis-

tributed random variables, with common distribution F. Let F s(n) be based

on {Xi}. ,{Yl . Then for any a > 0,

-l m P. log P(Fs(n) t a) - I(h(l + (a/l + a) ), )
n-o-

where I(-, ") is as in Theorem 3.

Proof" For any real a,

P(Fs (n) a a) - P(sxn2 /Sn > 1 + a) = P((l - )/(l -y) i + a).

P((l + a)yn -Xn > a) < P(Yn : a/(1 + a)).
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By Chernoff's Theorem,

(lim n "1 log P a/l 1 a)) ( C-IC(1 +. (a/a. 1)+), ).

But lrn log P(X c e) 0;

-l

Hence rn fr i n log P 0son) ( a) P Y

nmf -" nl -2
Pr lint k Io P <> (a + )l(a'+ .1.))

n ra -I( (l + ((a + c)/(a + n)) ), n)

oI( (1 + ((a :+ c)/(a + l)) ), ).
By lines l and 2,

-lim n" I log P((n) a) = IC Cl *@/a + l)), ). 0

Theoren 5: L.t F be a normal distribution, with mean z and variance a2 O.
Let (Xj)7. I , (¥i~ bemutuall• independent identically distributed random

! ~ ~~variables with comon distribution F. Let Fs(n) be based on {Xi} . , Y'l

Then for any a 0,

-lm nI log P(Fs(n) 2 a) * log(2(a + l9/(a + 2)).

n 2 a .Lt{ii 1  V~=

Proof: Without loss of generality, let ion 0, a U 1. Let a2 0.

be ti( sequences of niutually independent identically distributed random
variable with common distribution. Then for every a o,

P(F Crf) a a) =

n-1 n-i " :PC n log vi a a+ ) +

i1i=lii
n-1 n-i

i-l n-1

n-1
P(I(U - (a + 1)Vi)/(n- 1) 0).
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By Chernoff's Theoren

lbun1 log P(Il(Ui - (a + 1)Vi)/(n- 1) k O)-
logP(ifU 1

inf log(l + 2at - 4(a + 1)t2) "h

tko

log(2(a + 1)h/(a + 2)). 0

In Table 1, we display I((l + (a/(a + 1)), h) and -log(2(a + 1)h/(a + 2))

for selected values of a > 0. We see that Fs (n) converges to zero more r~idly

under some alternatives when the null distribution of the underlying observations

is normal than if the null distribution of the underlying observations is

symmetric Bernoulli. Unlike the t-statistic, the F-statistic does not converge

most slowly when the underlying observations have a symmetric Bernoulli

distribution.

(

A-
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IIi. Extremal Large Deviation Rates of the F-statistic. Before dealing with

the F--. tistic, wbich is used to test for equality of variances, we will

ConSider a related statistic used for testing the equality of means of positive

random variable ..

Def!.Ation 4: Let {Xi (.1  Y (Yi1 be mutually independent identically dis-

- t:ibutbt rardom variables with common distribution F e 0, where

C (F: fOdF 1 1, 0 < fxd*(x) < a). Define the ratio statistic, R., as

-1, where X7 , 7 , Lmrd indeterminate forms are as in Theorem 3.

Th-1p S Latis tic car. be u zd to test H0: M, a IlY. Under Hot R 0

a.. Unde: a non-nul! F, Rn . a(F) a.s. Without loss of generality, assue

(F), 0.

.r0 . L .° y j.O 0, and be as in Definition 4. Then for

W0C., G, a) .- 0.

1u-: .et F be a -C.Led bxt u specifi.ed distribution in 0. Clearly,

0 - ' t G, a) & -llan' log PF(R. a).
• ' :, br - " a2

, be :: ,. fi':ed. Lot a e/log(1 + (a 2)/4(a + 1)), and let

J..L -n- .07 2- Y(ir a) ii1 n 1 log PF( I X. a (a + 1) 1iYi) -
fl4-v. i1-1 i4

i n. ., ..., ,,Y X. - (a + i)Y. a 0) log inf *(t) *(-(a + 1)t),

, ','here , 1 t)
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Dr 100untuy mthods, log inf ¢(t) *(-(a. 1)t) * -c. The result follows,
tko

taking the limit as . 0

Before determining the extremal large deviation rate of the F-statistic,

some pm.laiwy reptts ar. noded.

Lema_ 1. Let x tend to zero from above. Then I i(1 + x), h) a x2 /2 + OCx2).

Proof: Expanding I(h(l + x), ) as a Taylor series, the result follows.

Lem a2 (Jones and Sethuraman, 1978). Let (X 1t,1 be a sequence of i.i.d.

symmetric random variables.

Then for every sample size n and b e (0, 1)

n n
PC I Xj/( I X) > nh b) < exp(-nI( (l + b), h)).

inl i-1

We are now ready to determine the extremal large deviation rate of the

F-statistic over appropriate classes.

Theorem 7. Let F n {F: F is symetric about 0, fx2dF < s). Let Ut) 4l(V i'

be two sequences of mutually independent identically distributed random

variables with comon distribution F, where F e F. Let Fs(n) be based on

{Ui} (V= )7i* Then for every a > 0,

W(E (n), F, a)= 0.

Proof: Choose and fix > 0. It is sufficient to find an F in F such that

lia n "1 log PF(Fs(n) k a) k -c.

Let a be chosen as in Theorem 6. Let {Xi)7i 1 , {Yi 1 be nutually

independent identically distributed random variables such that X has a
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,1) distribution. Let {i {i} be mutually independent

Gaun (a, 1)dsrbti. e 6}-jl

identically distributed syMetric Bernoulli random variables, independent of

{X4,, {Y Let F (n) be based on {U 3 ) .i 1 and

n 2 n 2

e Z X i For any a 0,

n 2 n xb .

P.iS l a) = I ( 
n( I (a + )

jul (F n ) P, ( 111 inl

n n 2 _ ni2 Yi)  2

S C.)"2 n[ I (a + M. I Xi + (a +)

,l" i- l 1 jul-i u

P (7 (1 -2lA~ exCn(( fl AZ), -)Xi 2i;l 1Zxy

(3) -1 .I2 r n(, X Q/() 
v 1Z1 1 ).1 i ,

jul jul 1

(4) E(l -2 exp(-nI(h(l + Z Y, {~ ~ -

p(-n~ I( (l + Z ), h) I(Z k 2/n)I{Xi, Yil",l)

(1 - 2 exp(-nI( (l + (2/n) ), h)))PF(Z 
k 2/n),

where (4) follows from (3) by Lenma 2.

By LeWM .X, 1 - 2 exp(-n I(Cl + (2/n) ), h) is asymptotic to (i -
2 exp(-l)).

By direct subst2 ution, n I n

PZ k 2/n) I ,2 (a + l)n/(n " 2)).

li-I

.llg42 2 i "1ii ence, lira n lo Ju J )zlmnr i mi-

---- w-

0:



One is tempted to conjecture the existence of a subclass of F, say F*,

such that W(F (n), F*, a) > 0. No such class has been discovered, although a

nunber of candidates have been ruled out. Notice that the construction in

Theorem 7 is scale invariant. By suitable scaling, this construction can be

irde to satisfy any condition on the absolute first moment, the second moment,

or the pth percentile of the underlying distribution. Restricting the

underlying observations to the class of symmetric and bounded distributions

Coos not yield a non-zero extremal large deviation rate, as can be seen below.

Theorem 8: Let H - {F: F is symmetric about zero, and has support in C-1, +lJ}.

Let {X.}. ,  be two sequences of mutually independent identically

distributed random variables with common distribution F, where F c H. Let

S(-0 be based on {X., Y.} . Then for every a ; 0, W(s(n), H, a) - 0.

ProC: Proceeding as before, let e > 0 be chosen and fixed.

Let 11 be the distribution that assigns mass e "£ to 0 and is uniformly

-" 'tM c''r (-I&, +1) with probability (1 - e'). Then for every a z 0,

1rn n"  log PH (Fs(n) > a

* 2
lir- n " log P (sn > 0s 0)=

H(s x,n > O, Sy,n %

n->ci'l4."". "-x~n • ' " ,

lir n {log(l - + log(e n )}

C.0

n-

- (rV¢~{AAAz-r-

....... ... ..... . - . -:_,, .... . ... . - .. ... . . , -~ ... . 2-,- .. ,', - . : i 
-

..
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-IV. Efficiencies of Tests for Equality of Variances

Consider the problem of testing for equality of variances of two popula-

tions, with underlying distributions unspecified. The usual procedure is to
reject the null 'hypothesis, equality of variances, if the statistic Fs(n)

exceeds some specified value. Call this test TI . Let us consider a

competitor to TV.

Moses (1963) has proposed a distribution-free test for equality of

variances. Moses recommends randomly allocating (Xi} k into n subsamples of

size k, and calculating sample variances. This is repeated with {Yi.l , and

the two collections of sample variances are then compared by means of the

Wilcoxon rank su test. Call this test T2 .

It is known that the half slope of the Wilcoxon rank sum test is positive.

Hence, the half slope of T2 i: also positive. By Theorem 7, the half slope

of T1 is zero at every alternative. Hence, at every alternative, the

Bahadur efficiency of the F-test, relative to Moses' test, is zero.

While the t.-test performs relatively well against distribution free

rcrmpetitors, the F-test performs as poorly as possible. One is tempted to

,'-ropos-- a "--'-st for variances" of the form

2 2 4 4 h
$n a (Sx,n y,n)/ Sx,n Sy,n)

The statistic Sn can be shown to be a monotone increasing function of Ps(n)

if Fs(n) > 0 and a monotone decreasing function of Fs(n) if F (n) < 0. Hence,
S s sI the half slope of Sn is zero at every alternative, just as the half slope of

F,(n) is.
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Table 1: Large Deviation Rates of the F-statistiC

Deviation Nomal Observations Bernoulli Observations

a -log(2(a + 1)h/(a + 2)) I( (1 + (a/a + ,

.05 .00030 
.02400

.10 
.00114 

.04617

.15 
.00244 

.06672

.20 .00415 
.08582

.25 
.00621 

.10363

.30 .00858 
.12029

35 .01122 .13591

.40 .01652 
.15058

.45 
.01716 

.16440

.50 
.02041 

.17744

.55 
.02382 

.18977

.60 
.02736 

.20144

• .65 .03102 .21251
.70 .03479 .22304

.75 
.03865 

.22305

.80 .04257 
.24259

.85 .04658 
.25169

.90 
.05064 

.26038

.95 
.05474 

.26869

1.00 
.05889 

.27665

1.25 
.08004 

.31188

Z.50 
.10147 

.34102

2.75 
.12281 

.36557

3.00 
.14384 

.38658
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Table 1
(continued)

Deviation Normal Observations Bernoulli Observations

a -log(2(a + 1) /(a + 2)) I(h(l + (a/a + 1) ),

3.50 .18455 .42072

4.00 .22314 .44737

5.00 .29389 .48651

6.00 .35688 .51406

7.00 .41334 .53456

-,8.00 .46436 .55052

9.00 .51083 .56332

10.00 .56358 .57618

1,1.00 .59281 .58264

12.00 .62934 .59014

13.00 .66344 .59660

14.00 .69537 .60225

15.00 .72542 .60721

?0.00 .85351 .62526

SGolog 2
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